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Figure 1: IoT collar replacement process.
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This work aims to demonstrate that an energy manager based on reinforced learning 
can be used for energy management in a wearable IoT application for livestock 

monitoring with solar energy harvesting.
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RELATED WORK

RL algorithm Year Energy 
harvesting Application Ref.

Q-Learning 2021 General General [1]

Q-Learning 2021 Solar General [2]

Q-Learning 2021 Solar Mobile [3]

Q-Learning 2022 Solar General [4]

PPO 2022 General Wearable [5]

FQL 2022 Solar General [6]

Q-Learning 2023 Solar General [7]

DQL 2023 TEG Ambiental [8]

Table 1: Application of RL in Energy Management for IoT devices.
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METHODOLOGY
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Wearable IoT device

The device consists of a IoT collar used by dairy 
cows:

• Microcontroller with LoRaWAN Wireless 
communication.

• Magnetometer, accelerometer and gyroscope 
sensors. Sampling frequency 10 Hz.

• GPS
• Local data processing and sending of results.
• Li-ion batteries and flexible photovoltaic panel.

Figure 2: Wearable IoT device.
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Energy Management System

Figure 3: Energy Management System proposed.
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Environment and agent

The environment is what the agent interacts with, in this case it consists of the 
energy dynamics present in the wearable device.

• Energy harvested from the environment through the solar panel (500-mW).

• Energy stored in a battery (Capacity: 10 Wh).

• Energy consumption:
• IMU operation and data processing.
• Data transmission.
• GPS location.
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Environment and agent

The reinforcement learning agent receives observations describing the 
device and the estimated behavior of the surrounding environment 
throughout the day.

Observation Range Physical value

Current battery charge [0,1] [0, 100]%

Target battery charge [0, 1] [0, 100]%

PV Panel Orientation [-1, 1]

Current Radiation [0, 1] [0, 1200] W/m2

All-day radiation [0, 1] [0, 1200] W/m2

Time of day [-1, 1] [0, 24] h

Table 2: List of observations.
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Environment and agent

The reinforcement learning agent takes actions by modifying the duty cycle,
data transmission frequency, and GPS execution frequency.

A reward function was defined that rewards getting closer to the desired
value and penalizes battery discharge.

Action Range Physical value

Duty Cycle [0.1,1] [10, 100]%

Transmission frequency [0.1, 1] [1, 10] trans./h

GPS frequency [0.1, 1] [1, 10] exec./h

Table 3: List of actions.
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Environment and agent

Three agents were defined based on state-of-art algorithms: TD3, PPO and SAC:

• They were implemented in MATLAB R2024a.
• Default hyperparameters were used.
• The discount factor was set to 0.9.
• 32 hidden units were considered.
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Environment simulation

A simulation of the
environment was implemented
in Simulink.

• To estimate consumption,
values from and IoT collar
capable of acquitting data
from an IMU, transmitting
wirelessly, and obtaining
GPS location were used.

Task Consumption 
(mW) Duration

Consumption 
per execution 

(mWh)

Active IMU 102 D -

Inactive IMU 22 1 - D -

Transmission 254 1.133 s 0.080

GPS exec. 437 48.520 s 5.887

Table 4: Energy consumption of the collar.



IEEE International Conference on Automation 
XXVI Congreso de la Asociación Chilena de Control Automático

Reinforcement Learning Applied in Energy Management 
in Wearable IoT with Energy Harvesting

16/27

Environment simulation

• To estimate the energy
harvesting, a Photovoltaic
Generation Model [9] was used,
which utilizes solar panel
parameters and environmental
variables such as radiation,
wind speed, ray direction, and
the angle of the surface.

Energy 
Consumption

Energy 
Harvesting

Energy Storage
+_

Weather and 
orientation 

data

Tasks
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Environment simulation

Different data were used for training
and evaluation:

Datos Entrenamiento Evaluación

Datos 
climáticos

2009 - 2015 2016

Datos de 
orientación

Variable aleatoria 
(movimiento del 

collar)

Datos reales
(192 horas de 

datos)
Figure 4: Location 

“Campo Experimental 
Maquehue.”

Table 5: Data set for training and evaluation.



IEEE International Conference on Automation 
XXVI Congreso de la Asociación Chilena de Control Automático

Reinforcement Learning Applied in Energy Management 
in Wearable IoT with Energy Harvesting

18/27

Training

Characteristics of the training:

• Training during 10 000 episodes (max. 24 steps).
• Initial battery charge: 20% ~ 100%.
• Target battery charge: ∆B ≤ 10%.
• Random panel orientation (average normal vector pointing zenith)
• Solar orientation for a day of the year
• Weather data between 2009 and 2015.
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Agent evaluation

Characteristics of the evaluation:

• Initial battery charge 𝐵𝑖𝑛𝑖: {30%, 60%, 90%}
• Target battery charge 𝐵𝐷: 𝐵𝑖𝑛𝑖 + {-5%, 0, +5%}
• Weather data and solar position: Jan 1 2016 to Dec 25 2016
• Estimated panel orientation from a real implementation.
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RESULTS AND DISCUSSION

Over the year, the agent based on
the TD3 algorithm performed
better, with a difference of 4.9%
with respect to the target battery
charge.

The worst performances were
obtained in autumn and winter.

Algorithm Summer Autumn Winter Spring Average

TD3 1.56% 7.34% 7.76% 2.58% 4.91%

PPO 6.70% 6.88% 7.25% 6.51% 6.84%

SAC 2.44% 9.68% 10.20
%

3.65% 6.62%

Table 5: Difference between target and current battery 
charge at the end of the day.
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RESULTS AND DISCUSSION

Illustrative example of the behavior of the manager based on the RL TD3 agent.
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CONCLUSIONS

• The obtained results demonstrate that an energy manager based on
reinforced learning can be used for energy management in a PLF wearable
IoT application.

• The manager can adapt to the varying conditions experienced by the
simulated device, adjusting the power consumption to the environmental
and operating variables.

• The applicability of the state-of-the-art algorithms TD3, PPO and SAC was
shown, being TD3 the one that obtained a better performance.
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CONCLUSIONS

• This work focused on the implementation of this kind of managers in a
wearable application for animals, being a subject little treated in the
literature.

LIMITATIONS

• This work considers a completely accurate weather forecast, which differs
from a real implementation.

• The impact on the consumption of the manager execution was not
considered.
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FUTURE WORK

• Consider the difference between forecast and actual weather.

• Implement the manager on a real device and evaluate its performance.

• Search for optimization processes of the agent after its implementation,
according to new data that will be obtained.

• Try new combinations for observations and actions.
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